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Abstract. The semiclassical description of billiard spectra is extended to include the diffractive
contributions from orbits which are nearly tangent to a concave part of the boundary. The leading
correction for an unstable isolated orbit is of the same order as the standard Gutzwiller expression
itself. The importance of the diffraction corrections is further emphasized by an estimate which
shows that for any large fixedk almost all contributing periodic orbits are affected. The theory
is tested numerically using the annulus and Sinai billiard. For the Sinai billiard, the investigation
of the spectral density is complemented by an analysis which is based on the scattering approach
to quantization. The merits of this approach as a tool to investigate refined semiclassical theories
are discussed and demonstrated.

1. Introduction

Besides the generic orbits which chaotic billiards support, important families of non-generic
orbits may exist, which affect the dynamics, and play a prominent role when the billiards are
quantized semiclassically. The bouncing ball orbits which reflect between straight sections
of the boundaries are an important example which has been studied extensively [1, 2] and will
not be dealt with here. Another type exists inconvexbilliards (or along convex sections),
and it comprises of whispering gallery orbits: these are classical trajectories which provide
a hierarchy of polygonal approximants to the boundary. A detailed study of the role of such
orbits in the quantization of convex and smooth boundaries is given in [3]. The particular
case of the stadium billiard, to which Lazutkin’s theory does not apply, was studied in [2].
The whispering gallery orbits occupy a narrow strip in phase space, limited on one side by
the boundary of the phase space domain. In the case of a smooth, convex billiard, every
point on the phase space boundary is a fixed point of the bounce map. We can therefore
consider the boundary as a one-parameter family of fixed points, which is the limit of the
family of whispering gallery orbits.

In this paper, we shall focus our attention onconcavebilliards, where the whispering
gallery modes do not appear. Instead, concave billiards are characterized by the existence of
tangentorbits along the concave sections of the boundary. They also form a one-parameter
family, which belongs to the boundary of the phase space domain. In this sense they are
the counterparts of the whispering gallery orbits in convex billiards. In contrast to convex
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Figure 1. The quarter Sinai billiard and the attached waveguide.

billiards, however, tangency introduces discontinuities in the classical map, and therefore
the set (of zero measure) of tangent orbits is excluded from the classical phase space when
the ergodic properties of the billiards are studied. Tangency is also responsible for a special
kind of bifurcation which can be best illustrated by considering the standard Sinai billiard,
or rather, its desymmetrized quarter (see figure 1). This will be the example we shall
use throughout this paper and it can be generalized to other chaotic concave billiards in a
straightforward manner. The chordAB in figure 1 is tangent to the arc of radiusR0 and it
is a classical trajectory which leads fromA to B. Bifurcations due to tangency occur when
one allows the radius of the arc to vary. When the radius is reduced to any valueR− < R0,
two classical trajectories can serve to connectA andB. One of them goes directly, the other
reflects specularly from the arc at a pointC. As R− → R0 the two trajectories become
closer, until they coalesce whenR− = R0. When the radius is increased to valuesR+ > R0,
both the direct and the reflected trajectories fromA to B become classically forbidden. That
is, A andB are mutually shaded from each other by the geometrical shadow cast by the
arc.

Tangency also affects the quantum (wave) dynamics in the billiard. Due to the finite
wavelength, the sharp geometrical shadow is replaced by a transition region which smoothly
interpolates between the strictly illuminated and shaded regions. This is thepenumbra
(Latin: almost shadow) domain†. The standard semiclassical quantization of billiards, which
is restricted to the illuminated domain, expresses the density of statesd(k) ≡∑n δ(k− kn)
(En = k2

n are the eigenvalues) in terms of classical periodic orbits via the Gutzwiller trace
formula [5]. A semiclassical theory for transitions to the strictly shaded domain can be
formulated in terms of non-classical orbits which are allowed to creep along a section of
the boundary. This approach was first discussed by Levy and Keller [6] who developed
the concept of geometrical diffraction theory in a systematic way. Vattayet al [7] recently
generalized Gutzwiller’s trace formula by including periodic orbits with creeping sections
that give exponentially small corrections. In a previous paper [8] we gave a preliminary
account of a semiclassical theory which is valid in the penumbra where the diffraction
contributions are not exponentially small. The purpose of the present paper is twofold—to
give a complete discussion of the penumbra effects, and to show how they can be scrutinized
within the scattering approach to quantization [9–12].

Diffraction effects appear as corrections to the leading semiclassical expressions which
are based on Gutzwiller’s trace formula. As we shall see, these corrections may either
result in a multiplicative prefactor for the amplitude of a classical orbit, or they can
involve additional contributions from new, non-classical periodic orbits. To identify the

† The wordpenumbraappears in this connection for example in [4]
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contributions from periodic orbits, it is advantageous to study the ‘length spectrum’

D(x) =
∫ ∞

0
dk eikxd(k) =

∞∑
n=1

eiknx . (1)

Strictly speaking,D(x) is a tempered distribution whose singular support is at lengths of
periodic manifolds of the classical billiard [13]. In the Sinai billiard these are the continuous
families of neutral orbits (bouncing ball manifolds) and isolated unstable periodic orbits. In
practice, we do not have the complete spectrum at our disposal, and we study the truncated
length spectrum

Dw(x) =
∫ ∞

0
dk eikxw(k)d(k) =

∞∑
n=1

w(kn)e
iknx . (2)

Herew(k) is a positive function with a finite support centred atk = k̄. Dw(x) is a smooth
function which contains besides finite spikes whereD(x) is singular, also transient, non-
asymptotic contributions. Some of them result from diffraction, and represent the subject of
this paper. The leading semiclassical contributions to (2) can be evaluated by substituting
the Gutzwiller trace formula, augmented with the special expressions due to the neutral
families. The difference between the semiclassical and the exact length spectra gives a
measure of the quality of the semiclassical approximation. We shall show below that the
corrections due to diffraction effects are responsible for the largest deviations. The main
difficulty of this approach is that the length spectrum for a chaotic billiard is rather dense,
and even with spectral sections containing thousands of eigenvalues, the contributions from
neighbouring lengths overlap to the extent that a detailed investigation of contributions from
individual periodic orbits is impossible. However, the scattering approach to quantization
offers a method to disentangle some of this complexity which is due to the proliferation of
periodic orbits.

The scattering approach that we shall employ here uses an auxiliary scattering system
which couples the billiard to a waveguide in an appropriate manner [9–12]. In a way, this
method provides the quantum analogue of the classical Poincaré section in terms of the
scattering matrix, and it has much in common with earlier [14] and later [15, 16] attempts
aiming at a similar goal. Since the method is well documented and reviewed, we shall only
mention its basic elements for the particular application to the Sinai billiard.

The scattering problem which we use in the present context is described in figure 1.
We define two systems to which we apply the Krein spectral shift theorem [17]. The
HamiltonianH0 of the first system is the kinetic energy (−1) in the space of functions
which satisfy Dirichlet boundary conditions on the parallel channel walls and on the section
0S which separates the original Sinai billiard from the waveguide. In the second systemH

the wall at0S is not present and the functions under consideration have to satisfy Dirichlet
boundary conditions on the extended billiard boundary illustrated by a full line in figure 1.
One can now define the scattering matrixS(E) for any energyE = k2, and at the energy
eigenvaluesEn of the billiard the secular equation det(I + S(En)) = 0 is satisfied. Krein’s
theorem is expressed by the relation

1

π
lim
ε↓0

Im Tr[G(E + iε)−G0(E + iε)] = 1

2π

d2(E)

dE
. (3)

The trace in (3) is taken over the space of continuum eigenstates ofH . G0 andG are
the Green’s functions for the two systems (G0 is zero inside the billiard domain), and
2(E) is the total phase of the scattering matrixS(E), defined by2(E) = −i log detS(E).
Krein’s theorem connects the excess density of continuum states due to the introduction of
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the scatterer, with the total phase of theS-matrix. Performing the trace operation in the
semiclassical approximation (see e.g. [18, 19]), one finds that the left-hand side of (3) can be
expressed as a sum of a smooth term and contributions fromtrappedperiodic orbits—orbits
which do not escape despite the fact that the billiard is opened. This is very important in
the context of the semiclassical quantization of billiards by the scattering approach. There,
one expresses the spectral density of the closed billiard as

d(k) = 1

2π

d2(k)

dk
+ 1

π
Im

d

dk

∞∑
n=1

(−1)n

n
Tr Sn(k). (4)

In the semiclassical limit, each TrSn is expressed as a sum of contributions from the periodic
orbits of the closed billiard which bounce on the section0S exactlyn times. However, there
may be periodic orbits which do not reflect from0S at all. They are trapped in the open
billiard, and their contributions to the level density come from the semiclassical expression
of 1

2π
d2(k)

dk via (3), as explained above [9]. 1
2π

d2(k)
dk also provides the leading term in

the expression for the smooth part of the spectral density. It also contains higher-order
contributions, but not necessarily all of them, as is discussed in [20].

Taking the Fourier transform of (4), we get an expression of the length spectrum in terms
of the Fourier transforms of12π

d2(k)
dk and d TrSn(k)

dk for all positiven. The transform of the
total phase will provide the length spectrum of orbits which are trapped in the open billiard.
In our system there only exists one isolated and unstable trapped orbit. Another contribution
comes from the family of marginally stable orbits which bounce perpendicularly between
the straight sections of the billiard. This is a very sparse set of lengths, and it leaves a lot
of space to observe diffractive orbits of various kinds. The Fourier transform ofd TrSn(k)

dk
provides the length spectrum of orbits which bouncen times from the section0S. In this
way we can partition in a systematic way the contribution from orbits with differentn to
the total length spectrum and next-to-leading-order effects such as diffraction contributions
can be better observed.

To get an idea of the way that the theory which was described above works in practice,
let us consider the simple case of the square billiard. Denoting the length of the square by
a, we get a diagonal scattering matrix

Sl,l′(k) = −exp

2π i

√(
ak

π

)2

− l2
 δll′ . (5)

The subspace of conducting modes is of dimension3 = [ ak
π

], where here the symbol [·]
stands for the integer part. In this case

1

2π
2(k) =

3∑
l=1

√(
ak

π

)2

− l2− 3
2
. (6)

Using the Poisson summation formula and performing integrals exactly, one obtains

1

2π
2(k) = a2k2

4π
− ak
π
+ 1

4
+ ak

2π

∞∑
m=1

1

m
J1(2mak)− 1

2π

∞∑
m=1

1

m
sin(2mak). (7)

This is an exact equality which can be interpreted as follows. The expression appearing in
the first three terms of (7) is the smooth spectral counting functionN̄(k) which consists of
only three terms: the area, circumference and corners terms [21]. The next infinite sum is
the contribution of the (open) manifold of periodic orbits which are parallel to the section
0S. The last sum is due to to the limiting periodic orbits which run along the edge0S and
its counterpart on the other side of the billiard. These two limiting orbits are the closure
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of the manifold mentioned previously. We thus see that the oscillatory part of (7) consists
of contributions which exhaust all possibletrapped periodic motion in the open billiard.
We would like to emphasize again that this result is exact. In the sequel, when we treat
the more interesting Sinai billiard, we shall obtain similar relationships which involve other
possible trapped orbits. This will be done, however, within the semiclassical approximation
and its refinements.

This paper is organized as follows. In section 2 we shall present the semiclassical
theory of quantization for billiards which are exterior to a circle taking into account the
leading diffraction effects both in the penumbra and the deep shadow domains. Once this
is achieved, we demonstrate the success of the theory using two numerical examples. The
first example in section 3 will be the annular sector which represents an integrable billiard.
In section 4 we turn to a detailed numerical study of the quantized Sinai billiard which
is chaotic and therefore necessitates the methods of analysis which were outlined above.
In section 5 we shall discuss the general significance of diffraction corrections for the
semiclassical quantization of a concave and chaotic billiard. The results of the paper will
then be summarized in section 6.

2. Theory of diffraction for dispersing billiards

In this section, we consider billiards with a domain� that is exterior to a circle (e.g.
the Sinai billiard). We find expressions for the contribution to the density of states of
periodic orbits which are nearly tangent to the circle (either by reflecting with a very small
angle or by passing very close to the circle). As will be shown, the standard semiclassical
expressions for contributions of such orbits fail. In addition, creeping orbits [6] exist due
to the concave billiard boundary (the circle in our case). The contribution of periodic orbits
which have a creeping part was studied by Vattayet al [7]. However, their expressions for
creeping orbits also fail if the orbit is too close to tangency (i.e. if the creeping angle is too
small). The expressions for periodic orbits near tangency, derived in this section, extend
the semiclassical description of a general billiard exterior to a circle. The methods we will
use for nearly tangent periodic orbits are adapted from the calculations of Nussenzveig [22]
for the problem of scattering off a three-dimensional sphere.

The free Green’s function satisfies

(1+ k2)G(r, r′) = −δ(r − r′) (8)

for any r, r′ and outgoing boundary conditions at infinity. From Green’s theorem one
obtains that the eigenvalueskn of the billiard are those values for which the boundary
integral equation

u(rs) = 2
∫
0

ds ′
∂G

∂n̂s
(rs , rs ′)u(rs ′) (9)

for the normal derivative of the wavefunctionu(rs) = ∂ψ/∂n̂(rs) has a solution. The
billiard boundary is denoted by0, and the normal direction̂ns in a point on the boundary
rs is pointing from� outwards.

Equation (9) is used to obtain a secular equation, from which the density of statesd(k)

may be found by a multiple reflection expansion containing terms as

Im
2N

πN

d

dk

∫
0

ds1 . . .dsN
∂G

∂n̂1
(r1, r2) . . .

∂G

∂n̂N−1
(rN−1, rN)

∂G

∂n̂N
(rN, r1). (10)

When the integrals are evaluated in stationary phase approximation, each saddle point in
one of these terms yields the contribution of a periodic orbit which reflectsN times off
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the boundary. This method has often been used as a starting point to derive semiclassical
theories for billiards, for example Alonso and Gaspard [23] employed it for finding higher-
order corrections to the contributions of periodic orbits.

For the purpose of considering nearly tangent or creeping orbits at the circle, the free
Green’s function is replaced by the circle Green’s function, which will also be denoted
by G. It satisfies (8) forr and r′ exterior to the circle, and moreover the prescribed
boundary conditions on the circle. The derivation of (10) may still be followed and yields
the contribution of periodic orbits which reflectN times off 0, which is now the billiard
boundary excluding the circle. The reflections off the circle are included in the Green’s
function, and so is the diffractive behaviour associated with creeping or nearly tangent
orbits. The problem is thus reduced to approximating the Green’s function of the circle
for different positions ofr andr′ in the formAeikL suitable for a subsequent saddle-point
approximation.

Although in principle the multiple reflection expansions based on the free and the circle
Green’s functions are equivalent and both exact, the latter greatly simplifies the mathematical
treatment close to tangencies. A hint to this is already contained in the classical analogue
representing a Poincaré map from the boundary0 to itself, which is discontinuous when
the circle is a part of0. The same system can be described by a mapping which isC(0)

when the circle is excluded from0 and the mapping function includes the reflection the
circle.

2.1. The circle Green’s function

In this section we consider a circle of radiusR centred at the origin, with Dirichlet
boundary conditions (ψ(r) = 0) on its boundary. In appendix A we indicate how the
results of this section modify for Neumann (∂n̂ψ(r) = 0) or mixed boundary conditions
(κψ(r)+ ∂n̂ψ(r) = 0).

The Green’s function of the circle satisfies (8) for anyr, r′ outside the circle, outgoing
boundary conditions at infinity, and Dirichlet boundary conditions on the circle. The exact
expression for the Green’s function is (in polar coordinates)

G(r, r′) = i

8

∞∑
l=−∞

[H−l (kr<)+ Sl(kR)H+l (kr<)]H+l (kr>)eil1θ (11)

wherer> (r<) is the larger (smaller) ofr and r ′, and1θ = θ − θ ′. The elements of the
scattering matrix of the circle which is diagonal in the angular momentum representation
are given by

Sl(kR) = −H
−
l (kR)

H+l (kR)
. (12)

We continue the discussion assumingr, r ′ & [1 + (kR)−2/3]R, so that the Debye
approximation may be used forH+l (kr) andH+l (kr

′) if l 6 kR. In addition we assume,
without loss of generality, that 0< 1θ < π .

The Poisson summation rule is used to express the Green’s function as

G(r, r′) =
∞∑

m=−∞
G(m)(r, r′) (13)

where

G(m)(r, r′) = i

8

∫ +∞
−∞

dl [H−l (kr<)+ Sl(kR)H+l (kr<)]H+l (kr>)eil1θ+2π iml. (14)
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Figure 2. The different regions ofr′ for a givenr. The penumbra occupies a small region on
both sides of the geometrical shadow line (dotted).

We discuss separately three regions forr andr′ (see figure 2). The first is the lit region, in
which the usual semiclassical results hold. It is obtained from them = 0 term in (13), while
them 6= 0 terms always describe the contributions of creeping waves. The second is the
deep shadow region, in which only creeping waves contribute and the third is the penumbra,
in which the leading-order contribution, them = 0 term, comes from nearly tangent orbits.
The lit and deep shadow regions lead to known contributions of periodic orbits and the
corresponding derivations will only briefly be described for the sake of completeness. The
reason for introducing three different regions is that we need the Green’s function to be of the
formAeikL, which is essential for using it in equation (10), and no uniform approximation of
this form exists. The boundaries of each region are determined according to the validity of
the underlying approximation and will be discussed in the following. At this point we stress,
however, that these boundaries arek-dependent, and hence the appropriate approximation
is determined in general not only by the geometry, but also by the value ofk.

2.1.1. The lit region. In the lit region the integralG(0)(r, r′) gives the usual semiclassical
result. For the scattering matrix elementSl(kR) the Debye approximation is used forl < kR,
and for l > kR it is approximated by 1. The integral is evaluated in the stationary phase
approximation. There are two saddle points, which relate to the two classical trajectories
from r to r′ (see figure 3). One is direct, and the other reflects specularly from the circle.
The Green’s function is then a sum of two terms. The contribution of the direct path is
given by

Gd(r, r
′) = 1

4

(
2i

πkL

)1
2

eikL (15)

whereL = |r − r′|, and the reflected path yields

Gr(r, r
′) = −1

4

[
2i

πk(Lr + Lr′ + 2LrLr′/a)

] 1
2

eik(Lr+Lr′ ) (16)

whereLr (Lr′ ) is the distance fromr (r′) to the point of reflection such that the length of
the reflected trajectory isLr + Lr′ . The impact parameter of the reflected path isbr, and
a = √R2− b2

r.
The semiclassical result fails when the reflected trajectory becomes nearly tangent

to the circle. To be precise, the semiclassical approximation holds provided thatbr .
[1 − (kR)−2/3]R. In other words the angle of incidenceθ should be smaller than



6700 H Primack et al

Figure 3. The geometry of trajectories in the lit region (in the upper part) and of creeping
trajectories in the deep shadow region (in the lower part).

Figure 4. The complexl plane. The squares represent the poles of theS-matrix. The heavy
curve shows the contour fromσ1∞, going throughkR and around the poles of theS-matrix to
σ2∞. The contour does not cross the two curves defined by (21) and (22), withη→±π/2.

π/2 − (kR)−1/3. This condition is necessary for the semiclassical approximation of the
scattering matrixSl(kR) to hold at the saddle point, and thus defines the borderline between
the illuminated region and the penumbra.

2.1.2. The deep shadow region.In the deep shadow region the contour of the integral
(14) for m = 0 may be closed in the upper half plane. The integral is then calculated by
summing the contributions of the poles of the integrand which are just the poles of the
S-matrix. The first few poles are close tokR (figure 4) and give a contribution which is
evaluated using the transition region approximation for the Hankel functions. The position
of these poles is given by

ln ≈ kR + eiπ/3xn

(
kR

2

)1
3

(17)

where−xn are the zeros of the Airy function Ai(x) [24]. The residues of theS-matrix at
these poles are given by

rn ≈ e−iπ/6

2π Ai ′(−xn)2
(
kR

2

)1
3

. (18)

The result is interpreted as the contribution of a creeping wave [6]. It starts fromr along
a path which is tangent to the circle and creeps along the circle in one of the available
creeping modesn until it leaves tor′ along a path which is again tangent to the circle (see
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figure 3). The contribution of a creeping wave to the Green’s function is

G(0)
c (r, r

′) = 1

4

(
2i

πkLrLr′

)1
2

eik(Lr+Lr′ )
∑
n

D2
neilnγ (0) (19)

whereLr (Lr′ ) is the distance fromr (r′) to the corresponding point of tangency, and
γ (0) is the creeping angle. The length of the creeping trajectory isLr + Lr′ + γ (0)R. The
diffraction coefficientD2

n is given for each creeping mode by

D2
n = eiπ/4

(
2π

k

)1
2

rn. (20)

The angular momentum along the creeping orbit in a creeping moden is ln. Its real part is
slightly larger thankR. The angular momentum also has a positive imaginary part, which
is the result of the continuous decrease of amplitude as waves leave the circle in a tangent
direction all along the way.

The same calculation holds for allm 6= 0 terms of (14), for any location ofr andr′.
For m > 0, G(m)

c (r, r′) gives the contribution of creeping waves going around the circle
an additionalm full times in the clockwise direction, such thatγ (m) = γ (0) + 2πm. For
m < 0, the integration contour should be closed from below, and the result describes the
contribution of creeping waves going in the anticlockwise direction|m| − 1 times.

The Airy approximation (17), (18) fails when inserted into (19) if the creeping angle
does not obeyγ � (kR)−1/3. This condition guarantees that the contribution of the poles
rapidly decays withn and defines the borderline between the deep shadow region and the
penumbra. If it is not satisfied, the sum in (19) has to be extended to poles which cannot
be described by (17) and (18).

2.1.3. The penumbra region.In the penumbra region, between the lit and the deep shadow
regions, the above expressions fail. In this section we obtain expressions valid deep inside
the penumbra, following the methods used by Nussenzveig [22] for studying the problem
of scattering off a sphere. The contour of integral (14) form = 0 is first deformed in the
upper half complex plane (see figure 4), so that it goes fromσ1∞, throughkR and around
the poles of theS-matrix toσ2∞. The limitsσ1∞ andσ2∞ are defined by demanding that
the contour does not cross the lines asymptotically defined byl = σ |l|, where

σ = exp
[
i
(π

2
+ ε

)]
(21)

and

η = ε ln

[
2l

ekr<

]
. (22)

The limits l → σ∞ and ε → 0 are taken simultaneously in such a way thatη → ±π/2.
The deformation of the contour allows a separate treatment of the two parts of integral (14).
For the first part we immediately obtain

i

8

∫ σ2∞

σ1∞
dl H−l (kr<)H

+
l (kr>)e

il1θ = 0 (23)

as the contour of the integral may be closed from above and the integrand has no poles.
The second part of the integral is split into two parts, which we call the direct and glancing
parts of the Green’s function for reasons which will become clear. The result is

Gd(r, r
′) = i

8

∫ σ2∞

kR

dl H+l (kr)H
+
l (kr

′)eil1θ (24)
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Figure 5. The geometrical set-up of trajectories in the penumbra. In the upper partr andr′ are
in the classically illuminated region (bd > R), and in the lower part they are in the classically
shadowed region.

and

Gg(r, r
′) = i

8

∫ kR

σ1∞
dl Sl(kR)H

+
l (kr)H

+
l (kr

′)eil1θ

+ i

8

∫ σ2∞

kR

dl [Sl(kR)− 1]H+l (kr)H
+
l (kr

′)eil1θ . (25)

Each of these terms will now be treated separately.
In the direct part (24), the Hankel functions are replaced by their Debye approximation,

and the integrand is evaluated around its saddle point. The only difference in the contribution
of the direct term from that of the lit region expression is that now the limit of the integration
must be accounted for, as it is close to the saddle point. The result is just the lit region
expression (15) multiplied by a simple factor. It is given by

Gd(r, r
′) =

(
F(∞)− F(ν)√

2i

)
1

4

[
2i

πkL

] 1
2

eikL (26)

whereF(x) = C(x)+ iS(x) is the Fresnel integral, and

ν =
(
kL

πzz′

)1
2

(R − bd). (27)

The impact parameter is again denoted bybd, and we havez =
√
r2− b2

d, z′ =
√
r ′2− b2

d

(see figure 5). The Fresnel factor is in general a complex number. It equals1
2 for exact

tangency. Close to the border of the illuminated region it approaches 1, and it tends to 0 at
the border of the deep shadow region. Although this is the correct limiting behaviour, (26)
is restricted to the penumbra and does not necessarily represent the correct interpolation
between the illuminated and the deep shadow regions. Geometrically, the Fresnel factor
corresponds to a transition from a classically allowed trajectory in the lit region to a ‘ghost’
orbit in the shadow region.

In the glancing part (25) the main contribution of both integrands comes from the
vicinity of kR. The integrals are evaluated using the following approximations: theS-
matrix is approximated by the transition region expression

Sl(kR) = −e2π i/3 Ai(xe−2π i/3)

Ai(xe2π i/3)
(28)

where

x =
(

2

kR

)1
3

(l − kR). (29)
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The rest of the integrand is taken atkR, using the Debye approximation for the Hankel
functions. This is justified for|γ (0)(kR)1/3| � 1, which defines the region of validity of
the penumbra approximation. The result of all these steps is that the onlyl dependence in
the integrand is in the argument of the transition region approximations. By a change of
the integration variable the problem reduces to finding the value of the constant

c = eπ i/3

21/3

∫ 0

−∞
dx

Ai(xe−2π i/3)

Ai(xe2π i/3)
+ 1

21/3

∫ ∞
0

dx
Ai(x)

Ai(xe2π i/3)
. (30)

Note thatc being a constant is the consequence of the particular choicel = kR for the
a priori arbitrary splitting point in equation (25). The first term in equation (30) is the
complex conjugate of the second, as was shown by Rubinow and Wu [25], and after a
numerical integration over the second term, we have

c ≈ 0.996 193 019 928.

Finally, the glancing term of the Green’s function is given by

Gg(r, r
′) = − c

4π

(kR)1/3

k
√
LrLr′

eik(Lr+Lr′+Rγ (0))+iπ/3 (31)

whereLr (Lr′ ) is the distance fromr (r′), along a line which is tangent to the circle, to
the corresponding point of tangency, and

γ (0) = 1θ − arccos

(
R

r

)
− arccos

(
R

r ′

)
. (32)

When bd < R, the values forLr, Lr′ and γ (0) are equivalent to those in the creeping
case. Whenbd becomes larger thanR (see figure 5), the points of tangency cross and
γ (0) becomes negative. Note that in contrast to (19), equation (31) contains no exponential
damping.

2.2. Diffraction corrections in the trace formula

The contribution of periodic orbits to the density of states of the billiard may now be
calculated. As was explained above, the contribution of orbits which bounceN times on
the exterior boundary0 is found from the multiple reflection expansion (10) using the
circle Green’s function and performing the integrals over the billiard boundary excluding
the circle in saddle-point approximation. For each circle Green’s function the appropriate
expression is used, depending on the positions ofri and ri+1. In the lit region we have
G = Gd + Gr (15), (16), in the deep shadow regionG = Gc (19), and in the penumbra
G = Gd+Gg (26), (31). In the deep shadow region the deviation from ikL in the exponent
in (19) is taken as part of the prefactor, as it is proportional tok1/3 and can be considered
as a slowly varying function for largek. Then in all cases the expressions for the Green’s
function are of the formAeikL suitable for the saddle-point approximation. After the saddle-
point integration a purely classical path yields the Gutzwiller contribution of an ordinary
unstable isolated periodic orbit corrected with the product of the Fresnel factors for all
segments traversing the penumbra. An important difference for creeping orbits is that the
action entering the Green’s functionG(r, r′) can be represented as a sum of two terms, one
depending exclusively onr and the other onr′. This is obvious from (19), (31) and (32).
As a consequence, the matrix of second derivatives entering the saddle-point approximation
to (10) decomposes intoK(P) independent blocks for an orbit (P) withK(P) > 1 creeping
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segments. Finally, one obtains an expression which is formally similar to the one derived
by Vattayet al [7] for the contribution of a creeping orbit in the deep shadow region

d
(scl)
P (k) = 1

rπ

d

dk
Im

K(P)∏
j=1

G
(scl)
j G

(diff)
j . (33)

The semiclassical Green’s functionG(scl)
j along the classical segmentj connecting two

points of tangency of the path to the circle is given by

G
(scl)
j = fj 1

4

(
2i

πk|M12|
)1

2

eikLj+iπµj /2 (34)

whereLj represents the path length,µj represents the number of conjugate points andfj the
product of all the Fresnel factors along the segment. The monodromy matrix is defined such
thatM12 = ∂x ′⊥/∂φ′′ with φ andx⊥ denoting the direction of the path and the coordinate
normal to it, respectively. The Green’s function along a creeping segment is given by

G
(diff)
j =

 4π
∑
n

rne
iln γj deep shadow

−2c(kR)1/3eikRγj−iπ/6 penumbra
(35)

andr in (33) counts the number of repetitions for orbits which are multiple traversals of a
primitive orbit.

Equation (33) gives the diffractive contributions in terms of geometrical information
from creeping orbits. However, if one is interested in the contribution of a purely classical
orbit which includes a very shallow reflection from the circle and must therefore be treated
in the penumbra approximation, it is also possible to give a correction to the standard
semiclassical expression without explicitly calculating the corresponding creeping orbit. For
this purpose, the length of the creeping orbit is approximated by the length of the classical
orbit since both orbits approach each other as the reflection becomes closer to tangency.
The monodromy matrix along the classical segment of the creeping orbit is replaced by the
monodromy matrix along the classical orbitexcluding the almost tangent reflection which
is incorrectly described in the standard theory. In terms of this reduced monodromy matrix
M and the angle of reflectionθ the Gutzwiller amplitude for the contribution of the orbit is

1

π

∣∣∣∣TrM − 2+ 2M12

R cosθ

∣∣∣∣−1/2

∼ 1

π

∣∣∣∣R cosθ

2M12

∣∣∣∣1/2 (36)

where we have assumed cosθ � 1. Comparing this with (33) we obtain the factor

c√
π cosθ

(kR)−1/6eiπ/12 (37)

by which the standard result for the contribution of the orbit is enhanced due to diffraction.
Finally, we would like to point out the different dependence onk of the contributions

from various periodic orbits. The contribution of an isolated periodic orbit, with all segments
in the lit region, is O(k0), as is expected in the semiclassical approximation disregarding
diffraction. For each segment in the deep shadow region, the contribution is multiplied by
O[exp(−Ck1/3)], whereC depends on the creeping angle corresponding to this segment.
For each glancing segment in the penumbra a factor O(k−1/6) is obtained. It is worth noting
that, unless the orbit segment is precisely tangent, it will eventually fall, for high enoughk,
either in the lit or deep shadow category.
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Figure 6. (a) The annular sector, withR2 =
√

2R1 and α = π/4. Three T-orbits (which
in this case are exactly tangent) are shown by broken lines. (b) The absolute value of the
length spectrum, withR2 =

√
2 andk0 = 1300. Peak T corresponds to the T-orbits. Peaks

Dn correspond ton repetitions of the orbits along the diameter. To peak P contribute orbits
which do not reach the inner arc, and bouncen > 2 times off the outer one. The peak atx = 0
corresponds to Weyl’s law.

3. Penumbra diffraction in the spectrum of the annular sector

The simplest billiard with a domain which is exterior to a circle, is the annulus defined by two
concentric circles with radiiR1 andR2. The annulus billiard is integrable, and its periodic
orbits form one-parameter families (or manifolds). The ratioR2/R1 may be chosen such that
two families of primitive periodic orbits, and their repetitions, will traverse the penumbra
of the inner circle (one with direct segments and one with glancing segments). As a first
numerical test of the expressions for diffractive periodic orbits, we consider the contribution
of these orbits to the spectral density of the annulus. The annulus has the advantage that
since it is integrable, its periodic orbits are easy to find, and its eigenvalues may be calculated
with a high accuracy and for high energies, reaching the limit(kR1)

1/3 � 1. As will be
discussed, however, diffractive periodic orbits which bounce more than once on the exterior
circle are not easily described by the theory presented in this paper because of a problem
which is specific to the annular geometry. For this reason we will only consider the shortest
diffractive periodic orbit of the desymmetrized annulus which bounces just once on the
outer circle. The example of the annulus is thus limited, and in particular it does not allow
us to check whether the expressions for the Green’s function of the circle give the correct
results after a saddle-point integration.

In this section we consider a desymmetrized annulus, the annular sector of angle
α = π/4, and withR2/R1 ≈

√
2 (see figure 6(a)). In the annulus with this radii ratio, the

square orbits of the outer circle are nearly tangent to the inner one. The orbits of the annular
sector are obtained from those of the full annulus by desymmetrization. However, as a
result of the symmetry of the square orbits, their desymmetrizations repeat the corresponding
primitive orbits of the annular sector four times. There are two types of primitive diffractive
orbits in the annular sector, the direct ones, arising from square orbits of the full billiard,
and glancing orbits. They are referred to as T-orbits and bounce once off the external arc.
For R2/R1 =

√
2 they merge into a single tangent orbit.

The eigenstates of the annular sector are given by

ψl,n(r, θ) = [Yl(kl,nR1)Jl(kl,nr)− Jl(kl,nR1)Yl(kl,nr)] sin(lθ) (38)

for l = 4, 8, 12, . . . andn = 0, 1, . . . wherekl,n are solutions of the secular equation

Yl(kR1)Jl(kR2)− Jl(kR1)Yl(kR2) = 0. (39)

We calculated the eigenvalues forR1 = 1 and R2 =
√

2 with k < 2800 (244 397
eigenvalues) to an accuracy of 10−10, and for several values ofR2 ≈

√
2 in the region
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Figure 7. (a) The maximum of the T-orbits peak in|Dw(x)| (full circles) as a function ofk0

for R2 =
√

2 andR1 = 1 (exact tangency). The maximal error of the penumbra expression for
this peak, including both direct and glancing contributions is given by the open circles. Note the
logarithmic scale. (b) The maximum of the T-orbits peak in|Dw(x)| (full circles) for different
values ofR2, with k0 = 1300 andR1 = 1. The maximal error of the semiclassical approximation
for this peak is given by crosses, for the creeping approximation by the squares and for the
penumbra approximation by the open circles. The penumbra region isbd−R1 6 0.045. In both
graphs the curves are for guiding the eyes only.

1050< k < 1550 to the same accuracy. In order to extract the contribution of the T-
orbits to the density of states we consider the truncated length spectrum (2) described in the
introduction. The weightw(k) is taken in all calculations of this section to be a Gaussian
with a centrek0 and a varianceσ 2 = 502 (see figure 6(b)). The peaks in|D(x)| are
Gaussians with a variance 1/σ 2 centred at lengths of periodic orbits. Our choice of the
variance assures that the peak corresponding to the T-orbits is well separated from all other
peaks. Thus, we can study the contribution of T-orbits without considering any other orbit.

To find the semiclassical contribution of the T-orbits in the annular sector, we consider
a desymmetrized form of the circle Green’s function, which satisfies Dirichlet boundary
conditions on the straight lines of the annular sector. It is given by

G̃(x, y, x ′, y ′) = G(x, y, x ′, y ′)−G(x, y, x ′,−y ′)−G(x, y, y ′, x ′)
+G(x, y, y ′,−x ′)+G(x, y,−y ′, x ′)−G(x, y,−y ′,−x ′)
−G(x, y,−x ′, y ′)+G(x, y,−x ′,−y ′). (40)

The contribution of orbits which bounce once off the outer arc0 to the density of states is
found using (10) as

Im
2

π

d

dk

∫
0

ds

[
∂G̃

∂n̂s
(rs , rs ′)

] ∣∣∣∣
s ′=s

. (41)

Different terms of the desymmetrized Green’s function (40) contribute to different orbits.
The fourth and fifth terms are those which contribute to the T-orbit manifold. Their
contribution is the same, as they correspond to the same orbit traversed in opposite directions.
The integrand is independent of the integration variable and the contribution of the T-orbit
manifold is therefore given by

Im
R2

2

d

dk

[
∂

∂r
G(r, 0; 0, r)

] ∣∣∣∣
r=R2

. (42)

For the Green’s function we use the expressions given in section 2.1. It is then either of
the formAeikL or a sum of two such terms. To leading order, which our calculations are
limited to, both derivatives in (42) act on the term eikL only.

In figure 7(a) we present the results for the exactly tangent periodic orbit (R2 =
√

2).
The success of the penumbra approximation in this case is evident. There are two
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contributions which are O(k1/2) for the direct path, and O(k1/3) for the tangent path. The
remaining error is very small, and decreases likek−1/3 (the measured slope of the error line
in the graph is−0.317), suggesting that the next order contribution comes from the glancing
part of the Green’s function. This could be expected since the penumbra approximation
which was used for the scattering matrix (28) is accurate to O(k−2/3).

In figure 7(b) we present the results for the peak from the T-orbits as a function of
the external radius of the annular sector whilek0 is fixed. Starting fromR2 > R1, the
semiclassical approximation is seen to break down as the orbit approaches tangency. On
the other side the creeping approximation breaks down when the creeping orbit approaches
tangency. The penumbra approximation is best at exact tangency. On both sides there
is a region where none of the approximations are successful, and some form of uniform
approximation would be needed to cover all regions well. The criterion for the validity
of the approximation inside the penumbra,|γ | � (k0R1)

1/3, gives |bd − R1| � 0.045.
The region of validity for the approximation in the deep shadow region isγ � (k0R1)

1/3,
and the crossover between the regions may be observed in the graph. For the lit side
the situation is different. All the values ofbd − R1 presented are outside the region of
validity for the semiclassical approximation. The reflected orbit givesbr = 1− (k0R1)

−2/3

for bd − R1 ≈ 0.15. (The criterionν = 1 yields that the semiclassical expression for the
contribution of the direct periodic orbit is valid whenbd−R1 > 0.035, and the error of this
approximation can be seen to grow whenbd− R1 becomes smaller than this value.)

At the beginning of this section it was stated that there is a problem, unique to the
annulus and the desymmetrizations thereof, in accounting for orbits which bounce more
than once on the exterior circle. The length of an orbit with two consecutive creeping parts
in the annulus is unchanged if the point on the exterior circle between these parts is allowed
to vary (as long as both parts remain creeping). Thus, an orbit bouncingn times on the
exterior circle and creeping in all its segments is in fact part of an parameter family of
orbits. The same situation occurs in the penumbra region for the tangent orbits. As this
problem is unique to the annulus, we did not pursue it further.

4. Diffraction effects in the quantized Sinai billiard

In this section we study the Sinai billiard, i.e. an example for a chaotic billiard exterior to a
circle. We demonstrate the importance of corrections to the standard Gutzwiller result due
to the diffraction on the concave part of the boundary and check quantitatively the different
approximations for the circle Green’s function derived in section 2.1. Moreover, we also
discuss examples for orbits, where none of the described approximations account for the
diffraction corrections in a satisfactory way.

The classical and creeping periodic orbits were calculated using the minimum and unique
coding principles [26, 27]. The quantum data on the Sinai billiard have been obtained using
the scattering approach to quantization [9]. The scattering system we consider here was
described in the introduction (see figure 1) and a detailed discussion of the numerical
evaluation of the corresponding scattering matrixS(k) can be found in [11].

However, the scattering approach to quantization does not only provide a framework for
an efficient quantization of the Sinai billiard, it also allows us to formulate the semiclassical
theory in a way which is particularly well suited to study higher-order corrections to the
standard results. In order to demonstrate this we will study both the semiclassical density
of states for the Sinai billiard, and the semiclassical approximation to the corresponding
S-matrix.
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Figure 8. Penumbra corrections of the length spectrum for the case of exactly tangent orbits.
The orbits considered are drawn below the frames. Full curves show the quantum (exact) length
spectrum, and dotted curves show thedifferencebetween the quantum length spectrum and
the semiclassical approximation supplemented by the results of [2] for the bouncing ball and
edge contributions. Vertical bars indicate locations of unstable periodic orbits, daggers indicate
bouncing-ball families. Note the logarithmic scale. (a) Shortest tangent orbit(x = 2). Broken
curve, glancing contribution also included. (b) Double traversal of the orbit considered in (a),
x = 4. The broken curve includes three penumbra contributions (see text).

4.1. Analysis of the spectral density

We begin with the energy spectrum of the quarter Sinai billiard witha = 1 andR = 0.5.
The results are analysed using the length spectrum (2). Semiclassically, every periodic
orbit (manifold) contributes toDw(x) in a small vicinity of its length, and this allows us to
pinpoint individual contributions. The selected spectral interval 06 k 6 300 contains 5667
levels. The weight functionw(k) was taken as a Gaussian centred aroundk0 = 150 whose
width is σ = 40. In the figures we show|Dw(x)| which is sensitive to both amplitude and
phase deviations.

4.1.1. Exactly tangent orbits.In figure 8 one observes clear deviations between the
quantum (exact) and semiclassical length spectra localized near the bouncing ball manifold
atx = 2 and its double traversal atx = 4. The semiclassical expression contains the leading
contributions from the bouncing ball families [2], the unstable isolated periodic orbits and
the edge orbit [2]. Thus, the deviations are mainly due to penumbra diffraction. As for the
annulus, we use an appropriately desymmetrized circle Green’s function

G̃[(x, y), (x ′, y ′)] = G[(x, y), (x ′, y ′)] +G[(x, y), (−x ′, y ′)]
+G[(x, y), (x ′,−y ′)] +G[(x, y), (−x ′,−y ′)] (43)

in order to calculate the penumbra corrections. In the multiple reflection expansion (10) we
concentrate on the terms that give the bouncing ball contributions. For the shortest family
and a single traversal we consider

dbb,1(k) = − 2

π
Im

d

dk

{∫ a

0
dx
∂G[(x, y1), (x, y2); k]

∂y1

∣∣∣∣
y1=(−y2)=a

+
∫ a

0
dy
∂G[(x1, y), (x2, y); k]

∂x1

∣∣∣∣
x1=(−x2)=a

}
. (44)

Due to thex ↔ y symmetry, the two terms are equal, and it is enough to consider only one
of them. Substituting forG its leading-term approximation into the penumbra,G ≈ Gd+Gg

and using equation (33) and the results of appendix B, we obtain

dbb,1(k) = dd
bb,1(k)+ dg

bb,1(k) (45)
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dd
bb,1(k) =

2(a − R)a 1
2 k

1
2

π
3
2

cos
(

2ka − π
4

)
(46)

d
g
bb,1(k) = −

2c

π
3
2

L
1
2R

1
3

k
1
6

cos
(

2ka + π

12

)
. (47)

The first term is the semiclassical contribution due to the bouncing ball family [2]. The
second term is a genuine diffractive contribution, that can be attributed to the exactly tangent
orbit at the closure of the bouncing ball manifold near the circle. The contribution of this
exactly tangent orbit is O(k−1/6) which is slightly smaller than O(k0) for unstable periodic
orbits.

In figure 8(a) we present a portion of the length spectrum nearx = 2. The
differences between the quantum and the semiclassical predictions (including bouncing
ball contributions) are about 10%. If we supplement the semiclassical expression with
the tangent contribution in (47), the deviation reduces to about 1%. This clearly assesses
the penumbra theory for exactly tangent orbits.

A more complicated situation arises for the double repetition of the above bouncing ball
family. The semiclassical contribution is given by an integral over a multiplication of two
circle Green’s functions, each decomposed intoGd+Gg, which results in three terms:

dbb,2(k) = − 4

π
Im

d

dk

∫ a

0
dx1 dx2

∂G[(x1, y1), (x2, y2)]

∂y1

∂G[(x2, y2), (x1, y1)]

∂y2

∣∣∣∣
y1=(−y2)=a

= ddd
bb,2(k)+ ddg

bb,2(k)+ dgg
bb,2(k). (48)

The terms are interpreted as ‘direct–direct’, ‘direct–glancing’ and ‘glancing–glancing’
contributions, with obvious notation. Straightforward calculations (see also appendix B)
give

ddd
bb,2(k) =

√
2(a − R)
π3/2

a1/2k1/2 cos
(

4ka − π
4

)
− a

π2
cos(4ka) (49)

d
dg
bb,2(k) = −

√
2c

π3/2
a1/2R1/3k−1/6 cos

(
4ka + π

12

)
(50)

d
gg
bb,2(k) =

c2

π2
R2/3k−1/3 cos

(
4ka + π

6

)
. (51)

The results fordg
bb,1, ddg

bb,2 and dgg
bb,2 agree with the general expression (33) and can be

interpreted as the contributions from isolated orbits which are exactly tangent to the circle.
The term ddd

bb,2 contains the semiclassical contribution of the bouncing ball family and
an interesting correction which is of the same order as an unstable periodic orbit. This
correction comes from the non-zero average of the squared Fresnel factor and thus is of
diffractive origin. There is no unstable periodic orbit that gives this contribution. These
predictions are fully verified against the numerical data shown in figure 8(b). Indeed, the
penumbra corrections reduce the deviations very significantly nearx = 4.

4.1.2. Almost tangent orbits.We now turn to the investigation of almost tangencies, that
occur in generic isolated and unstable periodic orbits. In figure 9 we indicated a few
periodic orbits for which there are significant deviations due to penumbra effects. We
choose to concentrate on the pair of periodic orbits of lengths 5.108 45 (direct) and 5.109 08
(glancing) which are plotted in figure 9(a). The orbits are geometrically similar, except that
the direct orbit has a segment that just misses tangency with the circle, while for the
glancing orbit the corresponding segment reflects from the circle in a very shallow angle.
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This angle of reflection is about 1◦, which is well inside the penumbra and fully justifies
the implementation of the corrections. To calculate the corrected contributions, we replaced
the semiclassical Green’s functions with their penumbra counterpartsGd andGg (see (26),
(31)). For the direct orbit, the only change was a multiplication of the standard semiclassical
contribution by a Fresnel factor, whose value was

F(∞)− F(ν ≈ −0.35)√
2i

≈ 0.71e−0.23i

for k = k0 = 150. Including this correction reduces the deviations significantly, as can be
clearly seen from figure 9(a). To account for the glancing corrections we use approximation
(37). While the difference in the lengths of the classical orbit and the corresponding creeping
orbit (with negative creeping angle) is very small (≈10−6), the prefactor significantly grows
by a factor of≈4.7. The contribution of the glancing orbits further reduces the deviation
by a factor of 2, as seen in the figure.

4.1.3. Ghost orbits. One of the most interesting applications of penumbra corrections
is for ghost and creeping orbits, which are classically forbidden. Ghost orbits which are
almost tangent in the shadowed part of the penumbra, are expected to give appreciable
contributions, comparable with standard semiclassical contributions of real periodic orbits
with similar lengths. To find such ghost orbits in the Sinai billiard, one therefore needs to
look at periodic orbits that are pruned at a radius slightly smaller thanR = 0.5 which we
use for the quantum results. Indeed, we observe a pair of geometrically similar periodic
orbits that coalesce and prune atR ≈ 0.48. After enlarging the radius back toR = 0.5, we
get a pair of ‘direct-shadowed’ and ‘glancing-shadowed’ penumbra orbits (see figure 9(b)).
The lengths of the orbits are≈ 5.2409 and 5.2413, respectively. The creeping angle of the
glancing orbits is≈ 1.4◦, which is small enough to justify the penumbra approximation.
The Fresnel parameterν for the direct orbit is≈ 0.25, that gives a multiplicative Fresnel
factor≈ 0.39 exp(0.31i) which indeed indicates almost tangency. The direct contribution is
by a factor≈ 3 larger (and with opposite sign) than that of the glancing orbit, and thus we
should expect to see a noticeable peak in the length spectrum. Our expectations are fulfilled,
as can be seen in figure 9(b). We can identify a peak in the quantum length spectrum

Figure 9. Penumbra corrections of the length spectrum for the case of almost tangent and
ghost orbits. The orbits considered are drawn below the frames. The full curves show the
quantum (exact) length spectrum, and dotted curves show thedifferencebetween the quantum
length spectrum and the standard semiclassical approximation. Vertical bars indicate locations
of unstable periodic orbits. (a) Pair of almost tangent periodic orbits atx ≈ 5.10. Broken
curve, direct term included, spaced dotted curve, glancing contribution also included. (b) Pair
of classically forbidden periodic orbits atx ≈ 5.24. Their location is indicated by a double
dagger. Notation is as in (a).
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nearx = 5.24 with large deviations between the quantum and the standard semiclassical
results. They correspond to the ghost orbits, and if we include ghost contributions, the
deviations significantly decrease, which indicates the success of the theory. We tried to
naively implement the geometrical theory of diffraction as in [7], which takes into account
only the creeping orbit. Summing over many creeping modes to get a convergent answer,
we obtained large deviations from the quantum results in the length spectrum, as expected
due to the small creeping angle.

4.2. The semiclassicalS-matrix

In this section we consider the semiclassical approximation to theS-matrix involved in
the scattering quantization. As discussed in the introduction, all the spectral information
on the billiard is contained in the total phase and the traces of theS-matrix. We would
like to show how this information may be extracted and used to study very fine details
of the spectrum which would otherwise not be accessible. The fact that theS-matrix is a
continuous function ofk rather than a sum of delta peaks necessitates an analysis which is
slightly different from that presented in sections 3 and 4.1. The central spectral quantity
which we consider here is the number counting functionN(k) = ∫ k dk′ d(k′) rather than
the density of states. According to (4) it can be decomposed as

N(k) = N(R)(k)+
∞∑
n=1

N(n)(k) (52)

with

N(R)(k) ≡ 1

2π
2(k)

N(n)(k) ≡ (−1)n

nπ
Im Tr S(k)n.

(53)

Each of the terms in this decomposition can be analysed separately. Here we will concentrate
on the first two termsN(R) andN(1). N(R) will be referred to as the resonance counting
function for reasons explained in [28]. Besides the oscillating contributions from trapped
periodic orbits it also contains a smooth part which is identical to the smooth part of the
billiard spectrum up to the third term in the expansion of Weyl’s law. This is not completely
obvious, since it is known for the scattering from the outside of a billiard [20] that in general
the above statement holds only for the area term. For the Sinai billiard we have clarified this
point in the introduction by considering the limiting case of an empty square billiard where
an analytic expression for the total phase is available. The resonance counting function
is particularly well suited for a semiclassical analysis, since it contains contributions only
from the very sparse set of trapped orbits, i.e. those orbits which never hit the section0S

of figure 1. Some of these orbits—classical and diffractive—are displayed in figure 10. In
order to pinpoint the contributions from individual periodic orbits we consider again length
spectra (figures 11–14) which are now obtained by a discrete Fourier transform using the
Welch window [29].

In figure 11 the length spectrum is displayed fora = 1 andR = 0.5. The broken curve
is obtained by subtracting Weyl’s law from the exact quantum result and contains therefore
all oscillatory contributions toN(R)(k). The most important of the oscillatory contributions
to the resonance counting function is of orderk1/2 and comes from the family of neutral
bouncing ball orbitsbb with length 2a and its multiple traversals. It is responsible for the
large peaks atx = 2 andx = 4 in figure 11. Disregarding diffraction but including the
edge orbite running along the right billiard wall, the contribution of the bouncing ball
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Figure 10. The figures show some trapped orbits of the opened Sinai billiard.bb denotes an
example for a bouncing ball orbit ande is the edge orbit limiting the family. The other edge
orbit u is the only isolated classical orbit contributing to the resonance counting function. The
orbits denoted withc are diffractive.

Figure 11. The length spectrum ofN(R)(k) obtained from the interval 1< ka/π < 281 for
a billiard with a = 1, R = 0.5 and Dirichlet boundary conditions on the circle. The broken
curve corresponds to the full quantum result with the smooth part subtracted according to the
generalized Weyl law, i.e. it comprises all oscillatory contributions to the resonance counting
function. The light full curve shows the deviations of the semiclassical approximation based on
all classical orbits from the quantum data and for the heavy full curve the diffractive orbits have
also been included into the semiclassical approximation. The lengths of contributing orbits are
marked with vertical bars.

Figure 12. The dependence of some peaks in the length spectrum ofN(R)(k) on the wavenumber
k in a double-logarithmic plot. The length spectrum was calculated ink intervals of width 30π/a
centred at the value which is given on the abscissa in units ofπ/a. As in figure 11 the upper
curve corresponds to the quantum result while the middle and the bottom curves show the
deviations of the semiclassical approximation excluding and including diffraction, respectively.
(a) Peak at the length of the unstable isolated orbitu. (b), (c) One and two traversals of a
bouncing-ball orbit. Thek-dependence can be fitted by a power law with an exponent given
next to the curves.

family has been derived in [2] and is also contained in equation (7). Besides this, the
only standard semiclassical contribution to the total phase comes from the isolated unstable
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Figure 13. The length spectrum ofN(R)(k) computed from the interval 1< ka/π < 81 for
a = 1, R = 0.5 and Neumann boundary conditions on the circle. The curve designations are as
in figure 11.

Figure 14. The length spectrum ofN(R)(k) computed from the interval 1< ka/π < 81 for
a = 1, R = 0.8 and Neumann boundary conditions on the circle. The curve designations are as
in figure 11.

orbit u running along the left billiard boundary. The semiclassical amplitude of such an
edge orbit has been derived, for example in [27]. For the light full curves in figure 11 all
standard semiclassical contributions have been subtracted. The remaining peaks in the full
curve are now exclusively due to higher-order corrections to Gutzwiller’s result. At the
length of the unstable orbitu (x = 1) this is sufficient to reduce the amplitude of the peak
by more than two orders of magnitude. The subtraction of the leading-order semiclassical
expression is less successful at the bouncing ball lengths, since there we have very large
diffraction corrections, which are explicitly given in (47) and (49)–(51). All these terms
have been subtracted from the quantum mechanical data to finally obtain the heavy full
curve. Indeed, the magnitude of the peaks at the bouncing ball lengths is now also reduced
considerably. The analysis can be further supported by considering the dependence of the
magnitude of the peaks onk as displayed in figure 12 using a double logarithmic scale. The
curves are obtained by restricting the Fourier transformation of the data to small intervals
centred around a meank given in units ofπ/a at the abscissa of the plots. The width of the
intervals is chosen large enough to guarantee a sufficient resolution in the length spectrum.
The approximate exponentsa for thek-dependence of the peaks in the semiclassical domain
have been determined by a linear fit to the curves at high values ofk and are given next to
the curves. In figure 12(a) we demonstrate in this way that the contribution from a standard
periodic orbit is correctly described by the Gutzwiller formula up to corrections of the order
k−1. At x = 2 (b) andx = 4 (c) the broken curve corresponding to the oscillating part of
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the resonance counting function is close to ak1/2-behaviour which indicates that the peak
is dominated by the bouncing ball contribution. The exponent for the peak atx = 2 in
the full curve is close to− 1

6 which agrees with the penumbra contribution of the tangent
orbit (47). When this expression is also subtracted from the data (heavy curve) we are left
with a peak whose magnitude is much smaller and moreover falls off faster thank−1/2, i.e.
the description of the tangent orbit is quantitatively correct and further corrections are of
lower order. The situation is similar atx = 4. However, the leading-order correction to
the bouncing ball result is now∼ k0 and does not come from an isolated tangent orbit but
from the diffraction correction in (49) to the family itself. When all diffraction effects have
been subtracted (heavy curve) the height of the peak is reduced by an order of magnitude,
but the peak does not fall off as fast as forx = 2. This apparent discrepancy is at least
partially due to the finite availablek-range since it disappears gradually as the interval of
computation is further enlarged (not displayed).

Besides the discussed corrections to the standard semiclassical contributions, the heavy
curve in figure 11 displays a number of additional peaks which are exclusively due to
diffractive orbits. The open Sinai billiard supports four families of primitive creeping
periodic orbits. The two shortest members from each of these families are displayed in
figure 10. These are orbits which are not due to a bifurcation of the type described in the
introduction or in the last section. Rather, they remain creeping even for very small radius.
The creeping length of the orbitc(0)1 is exactly zero, and therefore this orbit has always
to be treated within the penumbra approximation and results in (47). The other orbits are
in the penumbra or deep shadow region depending on the value ofk. In figure 11 the
lengths of the creeping orbits are indicated with vertical lines and the most important of
them are denoted on top of the plots. It is clearly seen that each peak in the length spectrum
corresponds to a particular periodic orbit. The parameters are such that the creeping orbits
are well described by the deep shadow approximation throughout the wholek range. Indeed
the magnitude of the peaks in the light full curve is reduced when the contribution of these
orbits is subtracted according to (33) (heavy curve), although the reduction is not as striking
as for the exactly tangent orbits.

From the expressions derived in appendix A we expect that in the case of Neumann
boundary conditions the creeping orbits have a larger amplitude than in the case of Dirichlet
boundary conditions. Indeed the peaks at the corresponding lengths in figure 13 (Neumann
boundary conditions) are more pronounced than in figure 11 (Dirichlet boundary conditions)
and the success of the deep shadow approximation for these orbits is even more evident
(note the different scaling of the ordinate according to the different magnitude of the
peaks). It is also possible to observe and correctly account for a peak atx = π/2 due
to the circumference orbitC which never leaves the circle at all. As the radius of the
circle grows, the lengths of the creeping orbits become closer to each other and the length
spectrum is more complex (figure 14). Nevertheless we see that the magnitude of the peaks
can be reduced considerably, when the semiclassical contributions are subtracted according
to (33). Unlike classical orbits, an arbitrary combination of primitive creeping orbits can
be joined to form a new periodic orbit which also gives a contribution to the spectrum. Of
particular importance are the combinations including the tangent orbitc(0)1 , since then the
creeping angle is relatively small. An example for a creeping orbit of this type is the peak
denoted byc(0)1 + c(2)1 in figure 14.

Now we would like to discuss the semiclassical approximation to TrS in more detail.
Again we will show that important corrections to the leading-order semiclassical result are
due to diffraction effects. In figure 15 we display the length spectrum of TrS, which can
be expressed semiclassically in terms of all periodic orbits of the Sinai billiard hitting the
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Figure 15. The length spectrum of TrS(k) for a = 1 and R = 0.5 in the interval
ka/π = 1, . . . ,281 with1k = π/64. The full curve shows the quantum data and the shaded
areas represent the error of the leading-order semiclassical approximation. The location of the
periodic orbits contributing to TrS is marked with vertical bars.

section0S exactly once. This includes the contributions from the two bouncing ball families
present in the Sinai billiard withR = 0.5 which result in the two most prominent peaks
in the spectrum atx = 2 and x = 2

√
2. Most of the other large peaks can be related

to isolated unstable periodic orbits as it can be seen from the vertical bars in the upper
part of the figures which denote the lengths of all the classical orbits contributing toS.
The remaining difference between the semiclassical approximation and the quantum data
after the leading-order contributions from all classical orbits have been included according
to the standard Gutzwiller result is displayed using the grey shaded areas. We see that
the semiclassical result accounts very well for some of the peaks at small lengths: all the
peaks up tox = 4 are reduced by the subtraction of the semiclassical result by at least
a factor of 10 (note the logarithmic scale). The result becomes increasingly worse as the
length grows and fromx ≈ 7 the leading-order semiclassical theory completely fails. In
order to understand the origin of the deviations we consider the interval 46 x 6 5 in
more detail. It contains 12 isolated classical orbits displayed in figure 16. We observe
large deviations between the semiclassical result and the quantum data for the orbits with
L = 4.12, 4.22, 4.61 and 4.62. These orbits have in common that one of their reflections
from the circle is very shallow, i.e. the classical description excluding diffraction effects
approaches the limits of its validity. However, unlike the orbits discussed in the context of
the spectral density, where a considerable improvement of the semiclassical result could be
achieved when the penumbra corrections are taken into account, the orbits of figure 16 are
not really well inside penumbra but rather at the border between the illuminated region and
the penumbra. Consequently the results of section 2 do not apply. As already mentioned
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Figure 16. The unstable periodic orbits contributing to TrS(k) with lengths in the interval
4 6 L 6 5. Below the figures the length and the stability prefactor of the individual orbits are
given.

in the discussion of figure 7(b), a uniform geometric theory of diffraction would be needed
in order to correct the contributions from such orbits.

The peaks at 4.47 and 4.75 do not correspond to classical orbits but represent the
contribution from creeping and ‘ghost’ orbits.L = 2

√
5a = 4.472 is the length of the

first completely shaded bouncing ball family, which does not give a contribution to leading
order. However, an important diffraction correction resulting in the observed peak in the
length spectrum is due to those orbits in the family which traverse the penumbra.

Finally, we turn to the conspicuous peaks in the length spectrum of TrS which are
located in the vicinity ofx = 8, 10, 12, . . . and can be explained by the orbits displayed
in figure 17. Below the orbits the length and the dominant eigenvalue of the monodromy
matrix are given. The orbits become very unstable as the length increases and the standard
Gutzwiller expression completely fails to predict the amplitude of their contribution, which
is due to the almost tangent reflection from the circle. Although the penumbra approximation
is much better and predicts at least the order of magnitude of the contributions, it is not
capable of giving a satisfactory quantitative description and therefore not displayed. While
for the shorter orbits the reflection from the circle is not yet inside the penumbra, the
problem with the longer orbits is that more and more of the straight segments are close to
the circle and need an additional diffraction correction which leads to an increasing error.
Moreover, additional corrections due to intermittency which were recently derived in [30]
may be necessary to predict the amplitudes correctly since the long orbits are very close in
phase space to the familybb of bouncing ball orbits transversal to the channel.

5. Frequency of penumbra traversals

The numerical examples of section 4.1 illustrated the success of the theory derived in
section 2 to account for the significant penumbra corrections for particular periodic orbits.
A natural question would be: How many periodic orbits should be corrected in this way? To
answer this question we should consider two factors. First, the borderlines of the penumbra
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Figure 17. Some of the orbits which give rise to the peaks at largex in the length spectrum
of Tr S. Below the orbits the length and the dominating eigenvalue of the monodromy matrix
are given. Due to diffraction the standard Gutzwiller formula fails to predict the contributions
of these orbits correctly.

are k dependent and the fraction of phase space occupied by the penumbra is of order
(kL)−2/3, whereL is a typical length of the billiard. This means that the penumbra shrinks
to 0 ask → ∞. In particular, we can also conclude that any given periodic orbit (that
has no exactly tangent segments) will be outside the penumbra fork large enough. The
second factor to consider is that in order to quantize the billiard up to a wavenumberk

with a resolution of the mean level spacing one needs to consider periodic orbits up to
the Heisenberg lengthLH ≈ kL2, or, equivalently up to number of bouncesnH ≈ kL.
This enhances the chance to visit a given area of phase space ask grows. To obtain the
overall effect of these two counteracting trends, let us consider for each periodic orbit
1 ≡ minj |lj − kR|, wherelj is the angular momentum of thej th segment of the orbit with
respect to the circles centre. The orbit traverses the penumbra at least once if1 . (kR)1/3.
If we assume ergodicity, then each segment of the orbit has ana priori probability

p ≈ (kL)−2/3 (54)
to traverse the penumbra. Assuming statistical independence of the segments, and
homogeneous coverage of phase space by long periodic orbits, the probability that an orbit
with n bounces avoids the penumbra is

(1− p)n ≈ exp[−n(kL)−2/3] = exp

(
− n

n
2/3
H

)
. (55)

Because of the exponential proliferation of periodic orbits, the overwhelming majority of
periodic orbits satisfyn ≈ nH and thusn2/3

H . n. This means, according to (55), that in
the semiclassical limitmost of the periodic orbits traverse the penumbra at least once, and
for them the semiclassical approximation fails and should be corrected. To emphasize this
point we rephrase our findings about the semiclassical limit as follows.
• Given a periodic orbit (which is not exactly tangent), its standard semiclassical

contribution is recovered fork large enough.
• For a givenk, most periodic orbits which are shorter than≈ n2/3

H are described by
the standard semiclassical approximation.
• Although their number grows withk, their fraction out of the relevant periodic

orbits becomes smaller, and the great majority of periodic orbits are affected by penumbra
corrections.

To verify these ideas we calculated1/(kR) for all periodic orbits of length up to 10
of the quarter Sinai billiard. There were 20 150 primitive orbits, with a total of 320 002



6718 H Primack et al

Figure 18. The coarse-grained distribution of1/(kR). Note the logarithmic scale.

segments. The coarse-grained distribution is shown in figure 18. It is sharply peaked near
the minimal value1 = 0, which indicates that almost all periodic orbits include a nearly
tangent chord, as predicted. To get a quantitative estimate, let us take the Heisenberg length
to be the maximal periodic orbit length:LH = 10. We need to estimate the relevantk. We
use the definition of the Heisenberg time

TH(E) = hd̄(E) (56)

which for billiards can be written as

2πd̄(k) = LH(k). (57)

If we use the leading-order expression ford̄(k) for billiards

d̄(k) = Ak

2π
(58)

whereA is the area of the billiard we obtain

k = LH

A
≈ 12.4 (59)

in our case. The relative phase space area occupied by the penumbra is estimated as

p ≈ 2(kR)
1
3

kbmax
≈ 0.21 (60)

wherebmax =
√

2 is the maximal impact parameter in the billiard. The factor 2 is due
to taking into account impact parameters which are both larger and smaller thanR. The
number of bounces is estimated by

nH = LH

c
= LHγ

πA
≈ 15 (61)

where c is the mean chord andγ is the billiards perimeter. Due to the exponential
proliferation of orbits, their majority will have a length close toLH and thusnH chords.
The probability of such orbits to avoid the penumbra is

q = (1− p)nH ≈ 0.03 (62)

and consequently about 97% of the orbits are expected to traverse the penumbra. The
penumbra borders in terms of1/(kR) are estimated as

1

kR
6 (kR)− 2

3 ≈ 0.3 (63)

which includes according to the numerical data 95.7% of the orbits, in good agreement with
the theory.
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6. Conclusions

In this paper we have considered the semiclassical quantization of billiard systems. Using
asymptotic approximations to the circle Green’s function we have derived corrections to the
standard Gutzwiller formula which account for the quantum diffraction from concave parts
of the billiard boundary in the penumbra. This is the nearly tangent parameter region where
neither the leading-order semiclassical result nor the deep shadow approximation [6, 7] are
valid. There are two types of corrections: the first can be expressed in terms of nearly
tangent classical periodic orbits (including ‘ghost’ orbits which cut straight through the
concave billiard boundary). The contributions from these orbits differ from the Gutzwiller
result by a prefactor of the order 1, i.e. the correction can be as large as the standard
semiclassical amplitude itself. The other type of correction can be expressed in terms
of creeping orbits including those with negative creeping angles. Although these orbits
are also obtained from the deep shadow approximation, their contribution is different in
the penumbra: the amplitude does not decay exponentially ink but only ask−1/6 for each
creeping segment of the orbit. The appearance of this new type of orbits in the semiclassical
quantization formulae raises questions about the structure of the set of all creeping orbits,
for example how they can be computed using an extremum principle together with a code
and if there is a one-to-one correspondence between the nearly tangent classical orbits
and the creeping counterparts by which they have to be replaced in the case of penumbra
diffraction. Although we have some preliminary results for the Sinai billiard, the answer to
these questions is beyond the scope of the present paper.

The derived corrections to the standard Gutzwiller result have been tested in both, the
integrable annular billiard and the chaotic Sinai billiard. The success of the theory was ob-
vious as long as the orbits under consideration were indeed well inside the penumbra region.

In the case of the Sinai billiard we have also used, besides the length spectrum obtained
from the set of billiard eigenvalues, an alternative method of spectral analysis which is based
on the scattering approach to quantization. Here discrete length spectra are directly obtained
from the total phase or the traces of the involvedS-matrix which has the advantage that only
limited subsets of periodic orbits contribute. The resulting sparse spectrum is particularly
well suited to observe deviations from the standard Gutzwiller result and we could in this
way check the quality of the penumbra and the deep shadow approximation to a high
precision.

The importance of penumbra diffraction corrections becomes obvious if one estimates
the number of orbits which are affected by them. It turns out that the amplitudes of most of
the orbits contributing to the spectrum up to some fixed valuek must be corrected. In view
of this fact it would certainly be desirable to further extend the results which we presented
in this paper to the parameter regions, where none of the so far known expressions are
sufficiently accurate.
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Appendix A. The circle Green’s function with Neumann and mixed boundary
conditions

The different approximations to the circle Green’s function are found in a manner similar
to section 2.1 when homogeneous boundary conditions are imposed on the circle. In this
appendix we give the modifications to the expressions derived in section 2.1 for this case.
Equations (13) and (14) are still the starting point for all calculations, and the boundary
conditions affect only the scattering matrixSl(kR).

For Neumann boundary conditions (∂n̂ψ(r) = 0) the scattering matrix is given by

Sl(kR) = −H
−′
l (kR)

H+
′

l (kR)
. (A1)

In the lit region,Gd(r, r
′) (15), the contribution of the direct path, is unaffected, while the

contribution of the reflected pathGr(r, r′) (16) is multiplied by−1. In the deep shadow
region, the contribution of the creeping pathG(0)

c (r, r
′) is still given by (19) and (20), but

with different polesln and residuesrn. The poles are given by (17), where in this casexn
are the zeros of Ai′(x). The residues are given by

rn = e−iπ/6

2πxn Ai(−xn)2
(
kR

2

)1
3

. (A2)

In the penumbra the contribution of the direct pathGd(r, r
′) (26) is unaffected by the

boundary conditions. The constantc in the contribution from the tangent pathGg(r, r
′)

(31) is now given by

c = − 1

21/3

∫ 0

−∞
dx

Ai ′(xe−2π i/3)

Ai ′(xe2π i/3)
+ e−2π i/3

21/3

∫ ∞
0

dx
Ai ′(x)

Ai ′(xe2π i/3)
. (A3)

The first term is again the complex conjugate of the second [25], and by a numerical
integration over the second term we have

c ≈ −0.864 251 443 481. (A4)

We now consider the general case of mixed boundary conditions (κψ(r)+∂n̂ψ(r) = 0).
Neumann boundary conditions are the case ofκ = 0, and Dirichlet boundary conditions
are the limitκ → ∞. The semiclassical quantization for mixed boundary conditions is
considered in [31]. The scattering matrix is given by

Sl(kR) = −κH
−
l (kR)− kH−

′
l (kR)

κH+l (kR)− kH+
′

l (kR)
. (A5)

In the lit regionGd(r, r
′) (15) is again unaffected. The contribution of the reflected path,

Gr(r, r
′) (16) is multiplied by a phase eiφ , whereφ is given [31] by

φ = 2 arctan

(
k

κ
cosθ

)
. (A6)

Note that forκ →∞ (Dirichlet) φ = 0, and forκ = 0 (Neumann)φ = π . The polesln for
the contribution of the creeping pathG(0)

c (r, r
′) (19) and (20) in the deep shadow region

are still given by (17), where in this casexn are the solutions of

Ai ′(−x)
Ai(−x) = eiπ/3κ

k

(
kR

2

)1
3

. (A7)

The residues are given by

rn = e−iπ/6

2π [Ai ′(−xn)2+ xn Ai(−xn)2]

(
kR

2

)1
3

. (A8)
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In the penumbraGd(r, r
′) (26) is again unaffected. The constantc in Gg(r, r

′) (31) must
be replaced by thek-dependent expression

c

(
κ

k

[
kR

2

] 1
3

)
. (A9)

After some manipulations,c(z) is given in a form convenient for numerical integration by

c(z) = 1

21/3

∫ ∞
0

dx
z Ai(x)+ e−2π i/3 Ai ′(x)

z Ai(e−2π i/3x)+ e2π i/3 Ai ′(e−2π i/3x)

+ 1

21/3

∫ ∞
0

dx
z Ai(x)+ Ai ′(x)

z Ai(e2π i/3x)+ e2π i/3 Ai ′(e2π i/3x)
. (A10)

For some applications it is convenient to express mixed boundary conditions as
b cosαψ(r) + sinα∂n̂ψ(r) = 0. b > 0 is a parameter of dimension of inverse length
and the parameterα interpolates between Dirichlet (α = 0) and Neumann (α = π/2)
boundary conditions. In [31] the derivative

∂

∂α
d(k; b, α)

∣∣∣∣
α=0

(A11)

is introduced as a tool for analysing the spectrum of the Sinai billiard. It was conjectured
there that the derivative of tangent contributions should semiclassically vanish. Using (A10)
we find that

d

dα
c

(
b

k

[
kR

2

] 1
3

cotα

) ∣∣∣∣
α=0

= e2π i/3k

b

1

(kR)1/3
(A12)

which together with (47), (50) and (51) indeed gives a contribution O(k−1/2) smaller than
for a standard unstable periodic orbit.

Appendix B. Calculation of direct contributions

In this appendix we calculate the purely ‘direct’ contributions todbb,1(k) anddbb,2(k) that
appear in sectio 4.1.1. The purpose is to find genuine diffractive (penumbra) contributions
beyond the semiclassical ones [2]. There is an inherent difficulty in this problem, since
diffractive effects are localized near the circle, while the bouncing ball family is more
global and covers a considerable volume of configuration space. In view of the lack on a
uniform approximation for the direct contributionGd, it is natural to consider a splitting of
the integration region into ‘near’ and ‘far’ regions, using the appropriate expressions in each
region. However, in our case it is not completely clear what the correct splitting is and what
the correct transition between the penumbra and the illuminated and shadowed regions is.
Thus, we choose to use the penumbra approximation ofGd for the whole integration region,
and after performing the calculation to consider more closely the origin of corrections, if
any.

To getdd
bb,1(k) we substitute into equation (44) the explicit form ofGd (equation (26)),

and to leading order ink we have

dd
bb,1(k) =

√
2kL

π
3
2

=
{

eikL+i π4

∫ L
2

0
F̃

(
2

√
k

πL
(R − x)

)
dx

}
(B1)

where we denoted̃F(x) ≡ [F(∞) − F(x)]/√2i. The integral is evaluated by using the
indefinite integral of the Fresnel function

I1(t) ≡
∫ t

F̃ (t ′) dt ′ = t F̃ (t)− 1

π

√
i

2
ei π2 t

2
. (B2)
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It can be simplified, if we consider the asymptotic approximation of the Fresnel function
for |t | � 1:

F(t) = F(∞) sign(t)− i

πt
ei π2 t

2 +O(|t |−3). (B3)

Combining (B3) with (B2) we obtain

I1(t) ≈ 1− sign(t)

2
t =

{
t t < 0

0 t > 0.
(B4)

Thus finally

dd
bb,1(k) =

(L− 2R)
√
kL√

2π
3
2

cos
(
kL− π

4

)
+O(k−

1
2 ). (B5)

This recovers the semiclassical contribution of the bouncing balls [2]. There are no
diffraction corrections todd

bb,1(k) that are larger than the semiclassical error of the bouncing
ball contributions. We emphasize that the asymptotic approximation ofF(t) was invoked
after the integration was performed. This is completely justified, because the argument of
both limits is O(k

1
2 ) � 1. Replacing theintegrand with the asymptotic form would be

unjustified, since the interesting region near the circle is not asymptotic.
For the double repetition the situation is more interesting. To leading order ink we

have

ddd
bb,2(k) =

√
kL

π
3
2

=
{

e2ikL+i π4

∫ L
2

0
F̃ 2

(
2

√
k

πL
(R − x)

)
dx

}
. (B6)

The relevant integral is

I2(t) ≡
∫ t

F̃ 2(t ′)dt ′ = t F̃ 2(t)−
√

2i

π
F̃ (t)ei π2 t

2 − 1√
2π
F(
√

2t) (B7)

≈ t
[

1− sign(t)

2

]
−
√

i

2π
sign(t) =

{
t +
√

i/(2π) t < 0

−
√

i/(2π) t > 0
(B8)

where the last line was obtained using the asymptotic approximation ofF(t). Equation (B8)
indicates, that in the lit region (t < 0, |t | � 1) we obtain a linear contribution, together
with a constant that comes from the integration neart ≈ 0. In the shadowed region we
only have a constant contribution from thet ≈ 0 region. Inserting (B8) into (B6) we obtain

ddd
bb,2(k) =

√
kL

π
3
2

(
L

2
− R

)
cos

(
2kL− π

4

)
− L

2π2
cos(2kL)+O(k−

1
2 ). (B9)

Thus, in addition to the semiclassical contribution due to the bouncing balls, we obtain a
genuine diffractive contribution. It is O(k0) which is the same as for an unstable periodic
orbit and therefore must be retained. The explicit form ofI2(t) in (B8) indicates that indeed
this diffraction contribution is obtained from the region near the circle and is not a result
of a more global effect.
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